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damping is suitable for this particular problem.

Numerical results of the temperature and stress responses due to a modified
step or single pulse are presented and discussed. One interesting observation
is that, under high rate of stress loading, the coupling in the energy
equation could generate temperature variations of significant magnitude.
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1. Introduction

Early investigaticns on thermo-mechanical interaction resulted in the

P
P

classical studies of thermoelasticity. Two major treatises nave besn cublished

[
e aa

which summarize the contributions in thermoelasticity up to the time of

L

?3'

early nineteen sixties (1-2]. Most commonly, problems of thermal stress were
formulated such that the temperature field does not depend on the stress
field, whereas the stress field is affected by the thermal expansion or
contraction of the material. However, the fully coupled system of equations
of thermoelasticity containing coupling terms in both the equation of motion
and the energy balance equation has received relatively little effort until
more recently. This development is largely due to the fact that these equations
by and large are not easily accessible by the available analytical techniques.
Some successes were achieved in isolated cases [3-5]. In these cases several
methods of analysis including Laplace transform or perturbation series have
been employed. For the fully coupled equations with arbitrary coupling

coefficient and with general type of boundary conditions one must resort

to numerical techniques. Numerical approach to the solution of the fully

coupled thermoelasticity equation has appeared’ in the literature [6]. More

' »
s

recently, finite element method has been applied in solving the boundary value

problem in a slab (7). Results of the analysis of the slab indicate that

PTIR  PW

under high rate of loading the coupling term in the energy balance equation

should not be ignored.

’ ,
PRgT WY

This paper presents the numerical method and some results obtained in
solving the coupled dynamical thermcelasticity equations in a long hollow
cylinder, subjected to the pressure and the heat flux boundary conditions

at the inner surface and ambient environment at the outer surface by a finite
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element method. Several numerical schemes are studied for comparison purpose.
Besides exhibiting the physics of the problem, this paper also is intended

to show how various numerical schemes are suited for these problems.

2. Mathematical Model

The classical coupled dynamical thermoelasticity equations are a pair
partial differential equations governing the balance of the linear momentum

and the enexrgy as given by the following [2].
uvzg + (A +y) grad divu + F-~ ygrad T = pd (1)
2-£.- . -2
veér X T-ndivus= X (2)

where u is the displacement vector and T is the temperature, A and u are
Lame's constants, p is the density, k is the diffusivity, Q is the heat source,
Y and n are defined as:

Y = (3x + 2u)a*

(3)
n = yT,/pck

where a* is the coefficient of thermal expansion, ¢ is the heat capacity, To

is the ambient temperature.

For a cylinder, the pair of equations (1) and (2) reduces to

13 Ju u 4 aT
- m— = 4
r a:“i?* * 2 * c12+ r ¢ 4)
and
139 T 1 13 .
- o= e prem— - - ctmmms 5
T a:‘ ar’ + k T+n r ar(‘“’ =0 ()
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Notice that due to polar symmetry the displacement vector u is reduced to the

radial displacement u, whereas the tangential component is identically zero.

Also, it is assumed that F 2 0 , Q = 0.
In Egs. (4) and (5), we have
m=y/(20 + 1) and ¢;2= (A + 2u)/p (6)

The initial conditions on u and T are: u(r,0)=0, T(r,0)=0.

The boundary conditions are:

at the inner boundary, r = ri .

' )
(A + 2u) ﬁ*-x;‘}-y(-r--ro) - £2(t) = O
and (7)

aT
- Bl [T - g*(t)] = 0

at the outer boundary, r = z,

du a
(A + 2u) 3c + xr - Y(T - To) o]
and (8)

T *
54-82'1'-0

where B: = h;/K and Bz' = ha/K , h; and h; are the heat transfer coefficients

at the inner and outer boundaries respectively. K is the thermal conductivity.

It is noted that the data on the forcing functions £* and g* are

compatible in that both thege functions are continuous at the initial time.
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Introducing the following set of non-dimensional variables

WSy -3 VAL,

- - - ct -
To £ r r5

and after some algebra, Egs. (4) and (5) are transformed into the following

non-dimensional equations with bars removed.

9 , 3u u 3T
Tty it ey =0 (20)
and
3 3‘1‘ - hod - 3 M -
- 3r(t3;) +crT+c) 3c (ru) = Q (11)

where ¢ = clri/k. Al = kn/Tg and Ay = mT, .
The initial conditions are: u(r,0)=0, T(r,0)=0 and the boundary conditions are:

at the inner boundary, r = 1

3Ju u
It + az- AT - £(1) = 0
(12)
a7
7 BiT + B819(t) = 0
at the outer boundary, r = ro
Ju u
ar+0r AzT'O
(13)
aT
E‘baz'r-o

where 8 = Bl’ri ) 32 = Bz'ri v @ = X/(2u + A) ,

g(t) = [g*(t) - Tol/Ty and £(1) = £*(t)/(A + 2u).
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f 3. SPACEZ DISCRETIZATION é
,3 Two approaches are used in the space discretization - Galerkin method which a
y g
\} uses linear shape function and generates consistent mass and conductivity %
matrices, and central explicit method which uses quadratic shape functions and é
? generates lumped mass and conductivity matrices. 1
i 3.1 Galerkin Method. 1In this method it is assumed that both of the
A4
;: approximate solutions of Egs. (10) and (l11), G and T respectively, can be
.
f: expanded in terms of the same shape function wi(r) (Figure 1).
" rd
& =2 ¢, (@ () '
. is= )y, (T :
5 gm0+ 4 X
_"4 (14) ;
Tef (0T, (1) :
= ¥, (x T
img + 1 i
L b
,3
. where n is the number of nodes, including the two boundary nodes. u, and 'ri

are the approximate nodal values of the displacement and the temperature

-

respectively. ) .
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Substituting Eq. (14) into Egs. (10), (1l), and (12) and (13) and imposing

the condition

v o 8 0w
Fy e N

r
o

»
e
A RN )

P,(r)dr = 0 j=0,1,2,~~=-n
%3 ’ (15)

k=1,2

where Rl and R2 are the residues calculated upon substitution as stated, and

performing integration and some algebraic work lead to the following pair of

linear algebraic equations:

.".'..'." S EC-DAALAELONT |- M
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(2)

(MU218 + [KU2]U + A2 [KT2]T = F (16)

terif + & txriyp + oo = eV

Cc

(17)

S 3 MR

where [MU2], [KU2],===-, etc. are tridiagonal N x N matrices. The details

of deriving the solution given in Egs. (15), (16) and (17) can be found in

Appendix A.

3.2 Central Explicit Method. 1In this case the shape functions wi(r)

are quadratic instead of linear. The weighting function is taken to be
6(:-:1). We let u and T be the following quadratic expansion within each
element.

i+l

i= I ¢ (r) u(T)
i1 i i

(18)

i+l
F=a L P () T (T
4-1 i i

where the y's are the lagrange polynomials.

Figure 2 illustrates the Y-function.

Using the same notation as before, we impose the condition

i+l

Ry 8(r-r,)dr = 0, i=0,1,2,---n (19)
i-1 j=1,2

The respective coefficient matrices of Egs. (16) and (17) for this procedure

are given in Appendix B.
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4. TIME MARCHING

Two approaches have been tried: the general implicit scheme [8] and the

ST RIS

three-point recurrence scheme [9].

4.1 General Implicit Method (GIM). For convenience we shall write Egs. .
4
(16) and (17) in a single eguation {4
M+ CX+Kf=F (20)
T
where X = {u,T}
w2 ! o
I Bl by
o | o
(kw2 ! A, KT2
ce|— —l=—
0 = KT1
i ]
[ o t 0| ’
Cm|=——+=—
ACUL | cTL
ea g2 0 g,

Equation (20) can be written as a first order differential equation in the form

AY = BY + [
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Applying GIM to Eq. (21) we obtain the following two-point recurrence scheme
(a-at0B1yi*1a (avat (1-0) BIy Feat rop he (1-0)FM) (22)

where 6 is a parameter, 0 £ 8 £ 1.

The selection of the value of 6 depends on the problem on hand, gquided by
the stability, accuracy and economy of the computation. The value 8 = 0.667

has been shown to be a good choice [9,10].

4.2 Three~Point Recurrence Method (GFE)

Let the shape function Ni(r) be defined such that
Ni_l(r) s -£(1-§)/2
Ni(t) = (1-§) (1+§) 23)
Ni+1(t) = E(1+g)/2

where £ = t/A1
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Figure 3 illustrates the Ni(r) functions.

3
Let  X(T) =N, (U)X, _, = N (D)X, + W, (0K 24) %
n-!
The residue R is defined as ﬁ
i
B
R=MX+CX+KX-F 25)
We require that
i+l
R Wi(T)dT = 0 (26)
i-1

where wi(r) is the weighting function. Performing the operation in Eg. (26) yields

(M + yATC + BaT’KIX,,  + [-2M + (1-2v)AtC

1
1 2 ' "1 2
+ (2 28 + v)AT K]gi + [M - (1-y)ATC + (2 + B=v)At K]Ki_l

- pat? = 0 (27)

where 8 and Yy are two parameters depending on the weighting function chosen.

1 1
8= w g H) de/f W, (5)48
1 -1

= -, L
Y wi(E) (g+ z)ds/ lwi(E)ds
-1 -
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‘ect of various combinations of 3 and vy for the solution of problems

.amics has been studied {11].

AND DISCUSSION

here are two schemes each for the srace and the time discretization,

the time discretization schemes there are several choices of values of
ers 6 , B and Y, many combinations of the space and time discretizations
e for the numerical solution of the physical problem.

oblems were selected with a view to compare the results of computation

g the relative merit of each sch:me regarding the stability and

'

sponses to a Modified Step Stress Input (Wave Equation Only).

e first series of computation was done to test the wave propagation

When the temperature T was removed by putting Xl = Xz = 0 and

boundary condition deleted, the remaining system of equations
a wave equation, for which analytical solution exists.

te computation a modified step stress is given as

£(1) = -0.1(1 - e 10T,

owing computation the same time and spatial increments are used for all.

ersus T Responses

- Pigure 4 shows the result of computation using Galerkin (GK) in
IM in time discretization. Three different values of 8 were used:

ntral difference), & = 0.667 (Gelerkin) and 2 = 1 (backward). The

A
% ORI STV

R i‘. R S
2a o b aca a2

gy e e,
A A
aa'mha e a- i s
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figure shows the radial and tangential stresses versus time at the midpoint
(r = 1.45). The results indicate that in the case 0f £ = 0.667, least amount
of spurious oscillation exists, whereas the other two schemes of GIM lead to
either spurious oscillation or excessive damping as evidenced by the drastic
reduction in amplitude.

GK/GFE - Figure 5 is the same set of responses calculated by GK/GFE with
four different sets of values for 8 and Y. They are (1) B = 0.25, vy = .5
(2) B=1/6, Y= .5, (3) B=.5,Yy=.6, (4) B = .8, Y =1.5. Results show
that the third set of B and Y give neither spurious oscillation nor excessive

damping.

CD/GIM or GFE ~ Figure 6 shows the computation based on a dentral explicit (CD)

scheme in space and three different schemes in time (1) GIM, 8 = 0.667
(2) GFE, 8 = .5, Y = .6 and (3) GFE, B = .8, Y = 1.0.
Curve (1) shows comparatively little dissipation in the amplitude responses,

whereas curve (2) and (3) exhibit significant dissipation.

In summary, it is demonstrated that several schemes give comparable
results in the wave propagation responses which are accurate and stable,
as can be verified at least gqualitatively by a method such as characteristics.
In the following, the fully coupled fields in the cylinder are analyzed
subject to either stress or thermal inputs at the inner bore. 1In the
stress input we use both pulse or step type input, whereas only pulse type
input is used for the temperature.

In this paper it is not the intention to give details regarding the
physical problem involved. The parameters used in the calculation
derive their origin from the application problem. For reference purposes,

a list of the values of the parameters used in the computation is given.
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The amplitudes of the pulses and the step are realistic values corresponding

to the physical situation in the application. E
;

-

~1

-

; P =27 i g€ =

5.2 Responses to a single stress pulse, £(T) = -0.0l5Te for different L

A b ‘e oo

ro/ri - At/Ay - and € - values (fully coupled eguations).
The next series of three figures show the radial stress versus time

responses of the cylinder with fully coupled equations subject to a single stress

pulse. Figure 7 shows for a cylinder with ro/ri = 2.0. Curve (1), (3) and (4)
correspond to GIM with different values of 6. From these curves it appears

that when 6 = 0.667 as shown in curve (1) the result is the best. Curve (3)

with 6 = 0.5 shows too much oscillation, and curve (4) with 6 = 1.0 shows
significant "numerizgi dissipation”.

Curve (1) and (2) have the same D-value but different AT/AY. Curve (1)
with AT/Ay = 0.2 gives better result in that it has less "numerical dissipation”.

Figure 8 is a similar computation but with uo/ui = 1,5, 8 = 0.667, but
different AT/AY. Curve (3) uses a very small AT(= 0.002), thus requires too
much computation time. Curve (2) exhibits significant "numerical dissipation”.
Curve (1) with At/Ay = 0.2 is the best compromise. |

Figure 9 is calculation for a very thin cylinder with YO/Yi = 1.1. The
schemes use 8 = 0.667 and AT/Ay = 0.2 and 2.0 respectively. For At/Ay = 0.2

the result shows less dissipation, whereas for AT/AY = 2.0 the result shows

B - SR LA

significant "numerical digsipation”.

-
[l

Therefore, from the above results we chose 6 = 0.667, At/AY = 0.2 for B |

f._j
s
LI

0
-

computing responses to stress inputs. -
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S.3 Responses to a Modified Step Stress, f£(t)= -.003(l-e”!0T) -

Figure 10 shows the responses in the radial stress, tangential stress

and temperature versus time. For the given input the rise time is 0.8, i.e.

| SRR

when t=0.8, £(7)= -.003. The plot is for the midpoint between the f£ifth and the

P
e -

sixth nodes with the non-dimensional r=1.45. Since the non-dimensional time

0
POV

T is scaled against the travel time of the elastic wave thrcough a distance equal

E
?
]

to the inner radius and the non-dimensional distance is scaled against the length
equal to the inner radius, it would take a unity of time for the radial wave to
travel a unit distance in non-dimensional scales. Thus, the time of arrival
of the radial wave should be about T = 0.45. This is indeed the case as shown

-

in Fig. 10. Notice that the radial wave does not rise to the maximum value

of the input as it would be the case in a slab [7], due to the effect of the

-curvature. Observed is also the fact that the reflect;é-wave, being tensile

in nature due to the free surface at the outer boundary, gives rise to intervals
of time when the radial stress drops off and becomes tensile stress for a short
time. A periodicity of t=2 is observed from the figure with good regularity
within the time plot. The travel time of the tangential wave should be about

-

(27) (1.45)/1 or 9.11. The calculation gives a good approximate check. %

The temperature response in the cylinder is due to the coupling in both
field equations. Predictably, the temperature generated is small, about
0.6°C v =1.4°C referred to ambient when the ambient temperature is 27°C. It

can be either positive or negative corresponding to a rise on a drop from the ambient

v R
o a8l a4 a4

temperature due to a volumetric compression or expansion. This effect usually -

2

is very small. Here, due to the high rate of change of strain, the coupling

effect is not ignorable.

ke
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5.4 Responses to a Single Triangular Stress Pulse

A triangular pressure pulse of duration equal to 2 and amplitude equal to

0.003 is applied at the inner boundary. Figure 11 shows the responses vs

time and Figure 12 the distribution of responses.
For large time T a standing-wave like motion is observed in Figure 12
as each point goes through a periodic motion of different amplitude, whereas

the two boundaries in this case are both traction free after t=2.

After T=2, the maximum non-dimensional radial stress occurring at

T=2.4 is tensile in nature and equals to 0.00194. The corresponding
minimum is a compressive stress .00164 at t=7.4. The induced temperature
varies from 1.2°C at T=7.4 to -1.3°C at t=2.4, referred to the ambient
temper?tu:e. The variation is about 5% of the ambient temperature. These

responses are not graphed in the figures shown.

5.5 Response to a Temperature Pulse, g(T) = 0.0081557e 000057

The time scale for the tamperature response is about four decades longer
than the stress response. The responses are evaluated at times when T 104.

In the numerical computation a time increment was chosen with the same factor
in mind.

Figures 13 and 14 show the radial and tangential stress distribution
for various times. Notice that when T is 104 the physical time t is 0.173 sec.
From T = 0.2 to T = 0.5 the actual time elapsed is 0.0519 sec., a relatively
short time for heat transfer.

The maximum temperature is 0.124 (“64.2°C) at the inner surface when

T=1.2 x 104. It drops down guickly as shown in Figure 15.
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6. Summary i

In summary, several observations can be made from the results of the

numerical experiments of this investigation.

(1) It is possible through deliberate experimentation to arrive at a
feasible numerical scheme to limit the amount of numerical dispersion
and dissipation to a reasonable level.

(2) The coupling introduced in the energy equation could cause temperature
fluctuation due to a rapidly applied stress input in the order of 5

to 108 for a single pulse input, depending on the rate of application.

(3) The effact of the curvature is to decrease the peak response of the

radial stress, in the presence of the tangential stress component.
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